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SMOOTH NONPARAMETRIC QUANTILE ESTIMATION UNDER
CENSORING: SIMULATIONS AND BOOTSTRAP METHODS

W. J. Padgett and L. A.- Thombs

Department of Statistics
University of South Carolina

Columbia, South Carolina 29208

ABSTRACT

Based on right-censored data from a lifetime distribution F0 ,

a smooth nonparametric estimator of the quantile function Q0 (p) is

given by Qn(P)=h-fn0 (t)K((t-p)/h)dt, where Qn(p) denotes the

product-limit quantile function. Extensive Monte Carlo simula-

tions indicate that at fixed p this kernel-type quantile estimator

has smaller mean squared error than Qn(p) for a range of values of

the bandwidth h. A method of selecting an "optimal" bandwidth (in

the sense of small estimated mean squared error) based on the

bootstrap is investigated yielding results consistent with the

simulation study. The bootstrap is also used to obtain interval

estimates for Q0 (p) after determining the optimal value of h.

1. INTRODUCTION

Arbitrarily right-censored data arise naturally in industrial

life testing and medical studies. In these situations it is

important to be able to obtain good nonparametric estimates of

various characteristics of the unknown lifetime distribution. One

characteristic of the lifetime distribution that is of interest is

the quantile function. For right-censored data, Sander (1975)

i" 1
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proposed estimation of the quantile function by the product-limit
quantile estimator, defined by 0 Fn, where F denotes the

n n n
product-limit estimator of the lifetime distribution function Fo

(Kaplan and Meier, 1958; Efron, 1967). Sander (1975) and Cheng
(1984) obtained some asymptotic properties of on , and Cs6rg'

(1983) discussed strong approximation results.

The product-limit quantile estimator is a step function with

jumps corresponding to the uncensored observations. A smoothed

nonparametric estimator of the quantile function from right-

censored observations based on the kernel method was proposed

by Padgett (1986), extending the complete sample results of Yang

(1985). Lio, Padgett, and Yu (1986) and Lio and Padgett (1985)

studied some of the asymptotic properties of this kernel

estimator, including asymptotic normality and mean square

convergence.

In general, the effective performance of nonparametric

function estimators is critically dependent on the choice of a

"smoothing parameter." If not enough smoothing is done, the

estimate will be "rough," showing features which do not represent

the function being estimated. On the other hand, if too much

smoothing is done, important features of the curve may not show up

since they are essentially smoothed away (Marron, 1986). For

kernel-type estimators, the smoothing parameter is often called

the "bandwidth," and an important question that arises is: Given

a set of data, what value(s) of the bandwidth are best to use in

calculating the smooth estimator in the sense of minimum mean

squared error, or with respect to some other criterion?

The objectives of this paper are two-fold. One is to report

results of extensive Monte Carlo simulations which demonstrate the

behavior of the mean squared error of the kernel estimator with

respect to bandwidth. These simulations provide a method of

choosing an optimal bandwidth when the form of the lifetime and

censoring distributions are known. Also, they compare the kernel-

type estimator with the product-limit quantile estimator. Five

commonly used parametric lifetime distributions, two censoring

mechanisms, and four different kernel functions are considered in

-J W
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this study, which is an extension of the brief simulations for

exponential distributions reported by Padgett (1986).

The second objective is to present a nonparametric method for

bandwidth selection based on the bootstrap for right-censored

data. This data-based procedure uses the bootstrap to estimate

mean squared error, and is both an extension and modification of

the methods proposed by Padgett (1986). Bandwidth selection

using the bootstrap is important for small and moderately large

samples since no exact expressions exist for the mean squared

error of the kernel-type quantile estimator. -Lio and Padgett

(1985) obtained an upper bound on the mean square convergence rate

of the kernel quantile estimator under random right-censorship,

but the bound is not sharp and does not readily lead to an

optimal choice of the bandwidth in the sense of minimum mean

squared error. The bootstrap also provides a method of obtaining

confidence intervals for the unknown quantiles or more generally,

confidence bands for the quantile function. Two such intervals

are presented in this paper.

In Section 2, the estimators and some of their asymptotic

properties are discussed. The simulation results are reported in

Section 3. The bootstrap bandwidth selection procedure is

presented in Section 4, and some examples are given which

indicate that the data-based nonparametric method yields optimal

bandwidths which are consistent with the Monte Carlo results of

Section 3. In Section 5, two bootstrap confidence interval

procedures are presented along with some convergence results which

provide asymptotic validity for the bootstrap in this setting of

quantile estimation.

2. NOTATION AND PRELIMINARIES

Let X0,.. I 0 denote the true survival times of n items or

individuals that are censored on the right by a sequence

U1 ,... ,Un, which in general may be either constants or random

variables. The X 's are nonnegative, independent, identically

distributed random variables with common unknown distribution

function F° and unknown quantile function 0 (p)Fo 1(p)=

0 0
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=infft:F (t) p), Opl.
0

The observed right-censored data are denoted by the pairs

(XiAi), i=l,...,n, where

IifX. < U.
X. = min(X., U.0 , A I 1

1i 1 i) 10 ?>u
0 if X 1

Thus, it is known which observations are times of failure or

death and which ones are censored or loss times. The nature of

the censoring depends on the U I s. (i) if U1 ,...,U are fixed

constants, the observations are time-truncated. If all U.'s are

equal to the same constant, then the case of Type I censoring

results. (ii) If all U. X the rth order statistic of
9 .. X then the situation is that of Type II censoring. (iii)

If U1 ,...,Un constitute a random sample from a distribution H
n0 0

(usually unknown) and are independent of Xl,...,X then i

i=l,2,...,n, is called a randomly right-censored sample.

For the asymptotic results of Padgett (1986), Lio, Padgett,

and Yu (1986), and Lio and Padgett (1985), the random censorship

model (iii) was assumed. For this model the distribution function

of each X. is F=l-(l-Fo)(1-H).

A popular estimator of the survival function 1-F (t) from the
censored sample (Xi,6i) , i=l,...,n, is the product-limit (PL)

estimator of Kaplan and Meier (1958). The PL estimator, which was

shown to be "self-consistent" by Efron (1967), is defined as

follows. Let (Zi,AI), i=l,...,n, denote the ordered XI's along

with their corresponding ti's. Values of the censored sample will

be denoted by the corresponding lower case letters, (xi,6i) and

(zi,Xi), for the unordered and ordered sample, respectively. Then

the PL estimator of l-Fo(t) is

ON Z <t.n i =-

The PL estimator of F (t) is denoted by F n(t)=1-P n(t), and the

size of the jump of Pn (or Fn) at Zj is denoted by s. Note that

..



!- I. - 'I -7WV W 47' I - -V V II -- . &

5

s =O if and only if Z. is censored for j<n, i.e. if and only if

X.=O. Define S. = E s. Fn (Zi+l), i=1,...,n-1, and S nl.23l 1

A natural estimator of 00 (p) is the PL quantile function
0n (P)=inf(t:Fn(t) p) (see, for example, Sander (1975), Cheng

(1984), and Csorgo (1983) for some of the properties of On .

Since Qn is a step function with jumps corresponding to the

uncensored observations, it is desirable to obtain a smoothed

estimator of Q. The kernel smoothed Qn considered by Padgett

(1986), Lio, Padgett and Yu (1986), and Lio and Padgett (1985), is

such an estimator, and is defined as follows: Let (h--h n) be a

"bandwidth" sequence of positive numbers so that h -)0 as n-*-, andn

let K be a bounded probability density function which is zero

outside a finite interval (-c,c) and is symmetric about zero.

(For asymptotic results, other conditions on hn , K, and F are

needed, but these are the only assumptions that will be made

here.) Then for Op l, the kernel quantile function estimator is

given by

Qn (p) h h-Oln(t)K((t-p)/h)dt

n S.
h - Zi S K((t-p)/h)dt, (2.1)

i=1 i-l

where So0. An approximation to 0n(p) was given by Padgett (1986)

as
InP ~ _ n

0 (p)=h £ Z.s.K((S.-p)/h). (2.2)n i=1 1 1 1

Although neither estimator is difficult to compute, (2.2) will be

simpler for some kernel functions.

The asymptotic normality, asymptotic equivalence, and mean

square convergence of (2.1) and (2.2) were studied by Lio, Padgett

and Yu (1986) and Lio and Padgett (1985). However, no small

sample properties have been derived. In fact, due to the

mathematical complications introduced by censoring, an exact

expression for the mean squared error of Qn(p) for small n is not

available. Thus, a bandwidth value minimizing the exact mean

squared error of Qn (p) cannot be obtained. A practical method for

I'
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selecting bandwidth is discussed in Section 4. First, in the next

section, a large simulation study is reported which gives compar-

isons of Qn and Qn with Qn and gives an indication of the behavior

of these estimators with respect to the bandwidth values, the

censoring mechanism, the kernel function, and sample size, using

the mean squared error criterion.

3. COMPARISON OF ESTIMATORS: SIMULATION RESULTS

A Monte Carlo simulation was performed for five families of

lifetime distributions that are commonly used in iife testing.
These distributions are shown in Table 1. Two censoring

distributions H were used: exponential with density h(u) = Xe
- u,

u>O, )>O, and uniform on the interval (O,X), )O. In addition,

three different kernel functions were chosen as Kl(X)=l-txI,
21

IxIjl (triangular), K2 (x)=3/4(1-x ), Ix <1 (quadratic), and

K3 (x)=l, xI<0.5 (uniform). Also, the uniform kernel on [-1,1]

was used, producing similar results as K3.

TABLE 1. Lifetime Distributions Used in Simulations

Distribution Density Notation

Exponential f(x)=rexp(-<x),x>O E(0):f=1

"" eibull f (x)= exp , L(-
"> (x, ) (0. 5, 1), (2, 1),

(2,5)
1

Gamma f(x)= x a-exp(-x/o), G(aO):
(x) 0a  (a, P)=(0.5,1), (2,1),

x>O (2,5)

1 (log x-a)
Lognormal f(x)= - exp - 13 L(, ):

(2 n) ~x I 21? J (ca,)=(O,1),(2,0.5)
x>O

_x_ [ ,(x-,) 1
Inverse f(x)=[ 3 exp - 2 I(, X)

Gaussian ,2 x ,
x>O (3,1)

The parameter X of the censoring distribution was determined

to give either 30% or 50% censoring. That is, X was determined

!....................... . . . . . . . . .
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so that the probability of a censored observation, Pr(X0>U)=0.3

or 0.5, at least approximately. This probability was calculated

by numerical integration using the midpoint rule when it could not

be obtained exactly. The value of X is reported in the resulting

table for each case.

Bandwidth values of h=0.01 (.02) 0.61 were used for quantiles

at p = 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95. Sample sizes of

n=20, 50, 100, and 300 were chosen, although only the results for

n=50 and 100 are shown in the tables presented here for brevity.

In each case simulated (i.e. each distribution, kernel,

bandwidth, p, and sample size combination), 1000 censored samples

were generated using the random number generators in the

International Mathematical and Statistical Library (IMSL, 1982) on

an IBM 370 computer. In particular, for uniform random number

generation, the IMSL subroutine GGUBS was used; for exponential

random numbers, GGEXN; for Weibull, GGWIB; for gamma, CGAMR; and

for lognormal, GGNLG. For generating random numbers from the

inverse Gaussian distribution, the method discussed in Michael,

Schucany, and Haas (1976) was utilized. From the 1000 samples,

the estimated mean squared errors (MSE) of the estimators On(P) ,

Qn(p) and On(p) were computed, and the ratios of these estimated

mean squared errors, A=(MSE 0 /MSE Q ) and B=(MSE Q /MSE 0 ), were
n n n n

calculated.

Some of the results of the simulations are shown in Tables 2-

9. In each case, for each p, there is a range of bandwidth values

for which On(p) has smaller estimated mean squared error than that

of On(p). The same behavior of 0n was observed, except that the

best bandwidth values were generally larger than those for 0n,

indicating that more smoothing is required for 0n .

Parzen (1979) indicated that kernel estimators of quantile

functions do not generally give good estimates for p near zero or

one since quantile functions are usually nonintegrable. This is

quite noticeable for 0n and Qn in Tables 2-9 for p near one,

although for some values of h, 0 is still better than the PL

quantile estimator. Also, it should be noted that as h-X) for

fixed n, O n(P)-n (p) and hence the ratios of mean squared errors
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TABLE 3. RATIOS OF MEAN SQUARE ERRORS WITH QUADRATIC KERNEL

LIFE DISRIBUTION: E(l) CENSORING DISTRIBUTION: E(3/7)
= 100 (30% CENSORING)

h
p 0.01 0.05 0.11 0.15 0.21 0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61
0.10 A 1.02 1.16 1.36 1.44 1.23 0.97 0.61 0.44 0.28 0.21 0.14 0.11 0.08

B ,.79 1.29 1.55 1.70 1.56 1.24 0.77 0.54 0.33 0.25 0.16 0.13 0.09

0.25 A 1.02 1.08 1.17 1.23 1.29 1.30 1.25 1.15 0.92 0.75 0.52 0.40 0.27
B 0.82 1.16 1.26 1.33 1.43 1.48 1.48 1.40 1.16 0.95 0.66 0.51 0.34

0.50 A 1.01 1.06 1.12 1.14 1,15 1.12 1.01 0.90 0.68 0.53 0.33 0.20 0.30
B 0.77 1.11 1.19 1.24 1.30 1.31 1.28 1.20 1.00 0.84 0.59 0.44 0.41

0.75 A 1.03 1.07 1.09 1.05 0.86 0.67 0.73 1.01 1.37 1.20 0.75 0.54 0.36
B 0.12 1.21 1.38 1.45 1.49 1.42 1.24 1.41 1.46 1.16 0.70 0.51 0.34

0.90 A 1.10 1.32 1.44 2.06 1.22 0.77 0.48 0.38 0.30 0.26 0.22 0.20 0.18
B 0.07 1.18 1.83 2.28 1.21 0.78 0.48 0.39 0.30 0.26 0.22 0.21 0.18

0.95 A 1.06 1.34 0.96 0.55 0.34 0.28 0.23 0.21 0.19 0.17 0.16 0.15 0.14
B 0.07 0.40 1.07 0.61 0.37 0.30 0.24 0.22 0.19 0.18 0.16 0.16 0.15

A = (MSE Q )/(MSE Q ), B = (MSE Q )/(MSE Q

TABLE 4. RATIOS OF MEEAN SQUARE ERRORS WITH UNIFORM KERNEL

LIFE DISTRIBUTION: E(1) , CENSORING DISTRIBUTION: E(3/7)
n = 100 (30% CENSORING)

h
0.01 0.05 0.11 0.15 0.21 0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61

0 .10 A 1.02 1.10 1.24 1.32 1.45 1.48 1.34 1.16 0.87 0.71 0.51 0.41 0.30
B 0.64 1.25 1.42 1.47 1.67 1.71 1.63 1.46 1.09 0.88 0.63 0.49 0.36

0 .2 A 1.02 1.06 1.12 1.16 1.21 1.24 1.29 1.30 1.30 1.29 1.23 1.17 1.03
0.24 0.93 1.11 1.19 1.27 1.32 1.41 1.45 1.49 1.47 1.46 1.41 1.29

0.50 A 1.00 1.03 1.08 1.11 1.13 1.14 1.15 1.14 1.10 1.06 0.97 0.89 0.76
B 0.06 0.68 1.02 1.10 1.16 1.19 1.25 1.25 1.30 1.27 1.21 1.15 1.06

0.75 A 1.02 1.05 1.08 1.08 1.07 1 .02 0.90 0.78 0.60 0.48 0.41 0.68 1.22
B 0.03 0.52 1.03 1.18 1.-I 1.26 1.24 1.23 1.11 0.96 0.39 0.66 1.20

0.9G A 1.07 1.26 1.35 1.35 1.61 2.06 1.18 0.82 0.55 0.45 0.36 0.31 0.27
B 0.03 0.47 1.10 1.07 1.34 2 .12 1.32 0.90 0.58 0.47 0.37 0.32 0.28

0.95 A 1.03 1.20 1.63 1.08 0.55 0.42 0.32 0.28 0.24 0.22 0.20 0.19 0.18
B 0.03 0.36 1.06 1.30 0.66 0.47 0.35 0.30 0.25 0.23 0.21 0.20 0.18

A (MSE Q )/(MSE Q ), B = (M Q )/(MSE Q
TI I TI tI
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TABLE 5. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL

LIFE DISTRIBUTION: E(1) , CENSORING DISTRIBUTION: U(0, 3.1941)
n = 100 (APPROX. 30% CVNSORING)

h
p 0.01 0.05 0.11 0.15 0.21 0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61
0.10 A 1.02 1.15 1.33 1.43 1.33 1.13 0.77 0.58 0.38 0.29 0.20 0.16 0.11

B 1.10 1.27 1.50 1.65 1.65 1.43 0.98 0.73 0.46 0.34 0.23 0.18 0.13

0.25 A 1.02 1.07 1.16 1.21 1.28 1.31 1.29 1.23 1.04 0.89 0.65 0.52 0.36
B 1.04 1.14 1.23 1.30 1.40 1.46 1.49 1.46 1.29 1.11 0.83 0.66 0.46

0.50 A 1.01 1.05 1.12 1.15 1.16 1.15 1.07 0.98 0.79 0.65 0.48 0.43 0.45
B 0.48 1.09 1.18 1.24 1.30 1.32 1.32 1.28 1.20 1.15 1.07 0.86 0.80

0.75 A 1.02 1.08 1.11 1.10 1.03 0.97 1.17 1.52 1.81 1.52 0.96 0.70 0.46
B 0.08 1.23 1.46 1.59 1.66 1.43 2.24 2.20 1.64 1.20 0.75 0.57 0.40

0.90 A 1.07 1.35 1.90 1.76 0.73 0.46 0.29 0.23 0.18 0.16 0.13 0.12 0.11
B 0.03 0.21 0.30 0.60 0.47 0.36 0.25 0.21 0.17 0.15 0.13 0.12 0.11

0.95 A 1.02 1.02 0.28 0.17 0.11 0.09 0.08 0.07 0.06 0.06 0.06 0.05 0.05
B 0.02 0.05 0.21 0.16 0.11 0.09 0.08 0.07 0.06 0.06 0.06 0.05 0.05

A = (MSE Q )/(MSE Q ), B = (MSE Q )/MSE Q
n n n n1

TABLE 6. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL

LIFE DISTRIBUTION: W(2,1) , CENSORING DISTRIBUTION: E(0.425)
n = 100 (APPROX. 30% CENSORING)

h
0.01 0.05 0.11 0.15 0.21 0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61

0.10 A 1.02 1.14 1.34 1.41 1.39 1.42 1.56 1.74 2.13 2.48 3.02 3.27 3.16
B 0.82 1.13 1.23 1.16 1.07 1.08 1.20 1.34 1.67 1.99 2.63 3.10 3.56

0.25 A 1.02 1.08 1.16 1.23 1.34 1.41 1.46 1.45 1.42 1.42 1.47 1.54 1.71
B 0.47 1.09 1.17 1.22 1.29 1.32 1.28 1.23 1.17 1.15 1.17 1.22 1.36

0.50 A 1.03 1.07 1.14 1.18 1.24 1.28 1.33 1.36 1.39 1.39 1.36 1.45 1.73
B 0.11 1.06 1.13 1.18 1.25 1.30 1.37 1.42 1.50 1.55 1.60 1.66 1.73

0.75 A 1.03 1.07 1.13 1.16 1.17 1.10 1.33 1.40 0.77 0.46 0.25 0.18 0.12
B 0.04 1.05 1.15 1.22 1.32 1.36 1.44 1.31 0.70 0.44 0.24 0.17 0.12

0.90 A 1.04 1.14 1.20 1.18 0.33 0.19 0.11 0.08 0.06 0.06 0.05 0.04 0.04
B 0.02 1.02 1.25 1.09 0.35 0.20 0.11 0.09 0.07 0.06 0.05 0.04 0.04

0 .95 A 1.07 1.23 0.38 0 17 0.10 0.08 0.06 0.05 0.05 0.04 0.04 0.04 0.04
B 0.02 0.54 0.45 0.20 0.11 0.08 0.06 0.05 0.05 0.05 0.04 0.04 0.04

A = (MSE Q )/(MSE Q ), B = (MSE Q )/(MSE Q
n ii n Ii

4.



TABLE 7. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL

LIFE DISTRIBUTION: G(2,1) , CENSORING DISTRIBUTION: E(0.415)
n 1 100 (APPROX. 50% CENSORING)

h
p 0.01 0.05 0.11 0.15 0.21 0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61
0.10 A 1.04 1.15 1.39 1.58 1.80 1.96 2.23 2.37 2.36 2.15 1.66 1.33 0.92

B 0.78 1.23 1.41 1.46 1.55 1.69 2.03 2.31 2.69 2.75 2.40 1.98 1.37

0.25 A 1.02 1.08 1.17 1.23 1.34 1.41 1.54 1.62 1.72 1.78 1.81 1.78 1.60
B 0.21 1.16 1.25 1.32 1.42 1.49 1.57 1.62 1.71 1.80 1.95 2.06 2.16

0.50 A 1.01 1.06 1.12 1.16 1.20 1.22 1.21 1.17 1.07 0.97 0.79 0.76 0.88

B 0.04 1.11 1.24 1.30 1.39 1.44 1.53 1.58 1.65 1.65 1.63 1.56 1.61

0.75 A 1.01 1.07 1.14 1.14 1.08 0.99 1.14 1.40 1.55 1.31 0.87 0.65 0.45
B 0.02 0.69 1.23 1.33 1.32 1.16 1.75 1.73 1.37 1.06 0.70 0.54 0.39

0.90 A 1.05 1.23 1.47 1.85 1.27 0.86 0.55 0.44 0.34 0.29 0.25 0.23 0.20

B 0.02 0.31 0.60 1.27 1.04 0.77 0.52 0.43 0.33 0.29 0.25 0.23 0.20

0.95 A 1.06 1.26 0.82 0.50 0.32 0.26 0.21 0.19 0.17 0.16 0.15 0.14 1.13
B 0.03 0.13 0.82 0.57 0.36 0.29 0.23 0.21 0.18 0.17 0.15 0.14 1.13

A = (MSE Q )/(MSE Q ), B = (MSE Q )/(MSE Q )

TABLE 8. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL

LIFE DISTRIBUTION: L(0,1), CENSORING DISTRIBUTION: E(0.274)
n = 100 (APPROX. 30% CENSORING)

h
p 0.01 0.05 0.11 0.15 0.21 0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61

0.10 A 1.07 1.19 1.41 1.57 1.74 1.85 2.00 1.98 1.65 1.31 0.85 0.62 0.39
B 1.11 1.24 1.43 1.48 1.56 1.69 1.97 2.13 2.03 1.70 1.11 0.80 0.49

0.25 A 1.02 1.08 1.16 1.20 1.25 1.27 1.30 1.29 1.20 1.08 0.84 0.68 0.45
B 0.95 1.14 1.23 1.29 1.36 1.41 1.47 1.49 1.44 1.35 1.10 0.89 0.61

0.50 A 1.03 1.07 1.11 1.11 1.07 1.01 0.88 0.76 0.56 0.42 0.25 0.20 0.18
B 0.41 1.17 1.23 1.26 1.27 1.24 1.13 1.03 0.81 0.66 0.45 0.32 0.26

0.75 A 1.02 1.06 1.04 0.96 0.69 0.49 0.43 0.50 0.71 0.90 1.14 1.15 0.95
B 0.10 1.27 1.41 1.46 1.43 1.37 0.90 0.91 1.12 1.28 1.34 1.21 0.92

0.90 A 1.10 1.21 1.28 1.86 2.34 1.90 1.26 0.99 0.74 0.64 0.53 0.48 0.42
B 0.12 1.79 2.54 3.32 2.44 1.79 1.18 0.94 0.72 0.62 0.52 0.47 0.42

0.95 A 1.07 1.31 1.58 1.10 0.70 0.57 0.46 0.41 0.36 0.34 0.31 0.30 0.28
B 0.10 0.51 1.51 1.07 0.70 0.58 0.47 0.42 0.37 0.34 0.31 0.30 0.28

-J
A =(tSE 0)/(MSE , B (MSE Q )/(MSE Qn n n n



12

TABLE 9. RATIOS OF MEAN SQUARE ERRORS WITH TRIANGULAR KERNEL

LIFE DISTRIBUTION: IG(3,1) , CENSORING DISTRIBUTION: E(0.182)
n = 100 (APPROX. 30% CENSORING)

h
0.01 0.05 0.11 0.15 0.21 0.25 0.31 0.35 0.41 0.45 0.51 0.55 0.61

0.10 A 1.04 1.12 1.28 1.39 1.45 1.49 1.50 1.40 1.05 0.78 0.46 0.32 0.19
B 1.13 1.20 1.33 1.34 1.34 1.40 1.53 1.55 1.30 1.00 0.59 0.41 0.23

0.25 A 1.01 1.05 1.09 1.10 1.07 1.02 0.93 0.84 0.66 0.53 0.36 0.26 0.16
B 0.96 1.12 1.18 1.21 1.21 1.18 1.11 1.02 0.83 0.68 0.46 0.34 0.21

0.50 A 1.02 1.04 1.04 1.02 0.92 0.81 0.61 0.47 0.29 0.20 0.11 0.09 0.07
B 0.71 1.17 1.19 1.19 1.12 1.04 0.84 0.69 0.48 0.37 0.24 0.16 0.11

0.75 A 1.04 1.07 0.94 0.80 0.55 0.41 0.38 0.42 0.57 0.71 0.99 1.19 1.40
B 0.17 1.58 1.76 1.82 1.82 1.80 1.10 1.01 1.12 1.28 1.55 1.68 1.69

0.90 A 1.07 1.27 1.58 2.22 2.60 2.20 1.57 1.28 1.00 0.88 0.75 0.68 0.61
B 0.16 1.11 1.73 2.97 2.42 1.92 1.40 1.17 0.94 0.83 0.72 0.66 0.59

0.95 A 1.04 1.17 0.83 0.59 0.42 0.35 0.30 0.27 0.24 0.23 0.21 0.21 0.20
B 0.10 0.23 0.70 0.55 0.41 0.35 0.30 0.27 0.24 0.23 0.21 0.21 0.20

A = (MSE Q )/(MSE Q ), B = (MSE Q )/(MSE Q )
n n n n
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should be near one for small h. This is not the case for 0n, as

pointed out by Padgett (1986).

With respect to the kernel functions, the results are quite

similar for all three. However, the bandwidth value giving the

largest ratio of mean squared errors is generally slightly larger

for the uniform kernel than for the triangular or quadratic

kernels, indicating that more smoothing is needed.

In all cases, the bandwidth value giving the largest ratio of

estimated mean squared errors for Qn tends to increase with p up

to about p=0.75 , and then decrease for larger p. This indicates

that more smoothing is needed in the miadle of the distribution

than in the tails to decrease the mean squared error of the

estimator.

Increasing the amount of censoring from 30% to 50% seems to

have little effect on the estimated ratios.

4. BANDWIDTH SELECTION USING THE BOOTSTRAP

The simulation results of Section 3 indicate reasonable

ranges of the bandwidth to use in practice, if the forms of the

lifetime distribution and censoring mechanism are known. However,

in general, the forms of the distributions are not known; this is

the reason for using a nonparametric estimator. Since the

proposed estimator n (p) is nonparametric, it is desired to use a

bandwidth selection method which does not require the parametric

assumptions of the results of Section 3. That is, given the

right-censored sample of size n, what is an "optimal" bandwidth

value to use in calculating Qn (p)? The bootstrap for censored

data provides a solution to this problem for a minimum mean

squared error optimality criterion.

It is proposed to estimate the mean squared error of O (p),

MSE (Qn(p)), as a function of H (for fixed p) by the bootstrap

method and to choose the value of h which minimizes the estimated

MSE (0 (p)). Let (x ,8.), i=l,...,n, denote the observed

censored sample. A bootstrap replicate (xi,8i) , i=l, ...,n, is

obtained by randomly drawing with replacement from the set of n

bivariate observations (xi,) Note that this simple resampling

-. .-p - -.- .4 C .%
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scheme makes no use of the estimated survival distribution or

censoring distribution, but has been shown to give the same

results as the bootstrap based on a resampling scheme which

reflects the censoring structure of the data (see Efron, 1981).

Denote the product-limit estimate of Q0 (p) based on a

bootstrap sample by Qn (p) and let Qn(p) denote the kernel estimate

from bootstrap data; that is,

0n (p) = h- Q Qn(t) K((t-p)/h)dt.

Based on a large number, B, of bootstrap replicates, an estimator

of the variance of 0n(p) is

I B * 2 B 2
V(h) = (B-i)-{ £ [0 .(P)j - E 0 ni(p)] /B), (4.1)

i=1 il

and the bootstrap estimate of Bias[Qn (p)] is

Bj(h) = B B 0* (P) - Q (p).i=l n

Denote the bootstrap estimate of the mean squared error of Q (p),
* n

HSE Qn(p ) by MSE n(p) .

In many of the simulations described in Section 3, as with

most kernel-type function estimators, for fixed p, as the band-

width h increased, the square of the bias of 0n (p) tended to

increase while the variance tended to decrease. Thus, MSE n(p)(h)

should be a decreasing and then increasing function of h, and the

bootstrap estimate, MSE *(p)(h), should yield a value of h giving
Qn~

an approximate minimum value of MSEQ (p)(h). However, in many
n

situations encountered in this study, MSE (h) was strictly
O (p)n

decreasing in h. This was due to both 0 n(p) and the estimate from

a bootstrap sample, 0n(p), being oversmoothed, and hence quite

close together. This resulted in a poor estimate of the bias in a

"variance-plus-bias 2 estimation of the mean squared error of

On (p). Therefore, the bootstrap estimate of bias was modified by

using the PL quantile function from (xi,8i) , which does not depend

on h, instead of 0 n(p). Hence, the bias estimate was modified to
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B- 1 B ,

B2(h)= B E Q ni(p) - Qn(p).
i=1

As h gets large (i.e. the kernel estimate is oversmoothed),
2

B2 (h)] tends to increase. A bootstrap estimate of MSEQ(p) (h)

then obtained by

MSE (p)(h) = V(h) + B (h). (4.2)

The value of h is chosen to minimize (4.2), yielding an estimated

bandwidth h(p).

To illustrate the procedure and to give an indication of how

well it performs, a random sample of size n=100 was generated from

the exponential life distribution E(1) with E(3/7) censoring

distribution as in Table 2. The functions MSE n(p)(h) from

B=300 bootstrap samples at each h and p are shown in Figure 1.

The triangular kernel function was used in these calculations.

The estimated ratios of mean squared errors from Table 2 are shown

as functions of h in Figure 2. Table 10 shows the "best"

bandwidths from Table 2, hR(P), and h(p) from Figure I. Note the

very close agreement of these bandwidth values. Figure 3 shows

the true quantile function Q0 and the kernel estimate Qn(p) using

the estimates of h as 0.17 (O<p<.2), 0.23 (.2_p<.5), 0.25

(.5 <p<. 7), 0.47 (.7_p<. 8), 0.11 (.8 _p<. 9 5), and 0.07 (. 9 5 <p<1.0).

In general, a value of h(p) can be estimated for each value of p

for which Qn (p) is to be plotted.

TABLE 10. Comparison of Best Bandwidths from
Figures 1 and 2

p hR(P) h(p)

0.10 0.15 0.17

0.25 0.25 0.23

0.50 0.21 0.25

0.75 0.45 0.47

0.90 0.15 0.11

0.95 0.07 0.07
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5. INTERVAL ESTIMATION

The bootstrap can also be used to obtain interval estimates

for Q0 (p). Assume that h has been determined and p is fixed.

The bootstrap estimate of the standard error of Qn (p) given

by equation (4.1) can be used to define an approximate (1-a)100%

confidence interval for Q (p),

(Qn(p) - Zlc/2 V(h), n(p) + zlcz/2 *V(h ) , (5.1)

where z Ica2 is the (1-a/2) percentile point of the standard

normal distribution. This interval requires no additional

bootstrap calculations than those involved in selecting h. Efron

(1986) has shown that the symmetric interval of the form (e-_z) is

"correct" if the statistic 0 has a normal distribution.

Asymptotic normality of Qn(p) had been established (Lio, Padgett,

and Yu, 1986), but for small to moderately large samples and p

near 0 or 1 there is some skewness in the distribution of Qn(p).

Furthermore, Efron's results on the validity of the standard

bootstrap interval (0±_oz) refer to the parametric bootstrap in

which resampling is from the parametric MLE of the distribution

function. Although easily computable, the interval given in (5.1)

may be inaccurate, since small sample skewness of the distribution

of n (p) will not be reflected. Since the nonparametric bootstrap

is used here, an interval which requires no normality (or

symmetry) assumptions may be more appropriate in this setting of

quantile estimation.

The above discussion suggests a second approach based on the

bootstrap percentile interval method. The idea is to use the,

bootstrap values Qni(P)' i=l,...,B, to estimate the actual

distribution, G, of 0n(p). Given n and p, the (Monte Carlo

estimate of the) bootstrap distribution of 0n(p) is defined as
*n

#[Q (p)<k)
* * ni -

G (k) = P (Qn(p)<k) = B (5.2)

While B = 300 is sufficient to estimate standard errors, a larger

number of bootstrap values Oni(P ) is needed to obtain adequate

estimates of G. When B is too small, the bootstrap may yield poor

- e-r. -r-
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estimates of the tail behavior of G. Generally, B=1000 is

considered large enough.

The percentile interval uses quantiles of G to estimate the

quantiles of the true distribution G. An approximate 100(1-a)%

confidence interval for Q(p) is defined by
G (), G (1-a)]. (5.3)

Note that this interval requires additional computations to those

involved with bandwidth selection, but these calculations are

minimal since the value of h has been determined.

As an illustration of the methods presented in Section 4 and

equations (5.1) and (5.3), consider the censored data set of n=100

observations given in Table 11. This data set was generated from

the exponential life and censoring distributions used in Table 2

(that is, 30% censoring). The values of h(p) were determined from

TABLE 11. Simulated Censored Sample

x. . x. . x. x.

0.447 0 0.400 1 0.956 0 0.449 0
0.773 1 0.042 1 0.005 1 0.483 1
0.750 1 0.532 1 0.908 1 0.302 0
0.033 1 0.308 1 0.829 0 0.840 1
1.049 1 0.077 0 0.580 0 0.020 0
0.397 1 0.884 1 0.305 1 0.157 1
0.946 1 0.137 1 0.095 0 0.712 1
0.924 1 0.244 1 0.210 1 0.401 1
0.242 1 1.611 1 0.121 1 0.453 1
0.993 1 2.051 0 0.657 1 2.693 1
0.241 1 0.615 1 0.167 1 1.097 0
0.503 0 1.007 0 0.332 1 1.258 1
0.151 0 1.483 1 1.950 0 0.392 1
0.089 1 0.605 1 0.569 1 0.050 1
1.163 0 1.060 1 0.417 1 0.303 1
1.074 0 0.708 0 0.736 0 0.084 1
0.543 1 0.333 0 0.072 0 0.257 1
0.183 1 1.261 1 2.792 1 1.096 0
0.373 1 0.815 1 1.358 1 0.443 1
0.848 1 0.224 0 1.609 0 3.616 1
1.272 1 0.455 1 0.695 0 0.139 1
0.219 1 0.604 1 1.121 1 0.253 1
0.985 0 1.457 1 0.094 1 0.156 0
0.745 1 0.975 0 0.903 1 0.647 1
2.783 1 0.791 1 1.054 1 0.167 0
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B=300 bootstrap samples as described in Section 4 for p=.l0, .50,

.75. For the chosen value h(p), the estimate On(p) was calculated

and the bias, the standard error, and the two approximate 95%

confidence intervals described above were obtained from B=1000

bootstrap samples. The results are given in Table 12. Note that

the intervals from (5.3) are shifted slightly from those given by

(5.1), indicating the skewness of the distribution of Qn(p).

TABLE 12. Computation Results for Simulated Data

p QO(p) h(p) Qn (p) Interval (5.1) Interval (5.3)

0.10 0.1054 0.17 0.1462 (0.0849,0.2076) (0.0953,0.2194)

0.50 0.6931 0.23 0.7440 (0.5781,0.9099) (0.5903,0.9118)

0.75 1.3863 0.49 1.2605 (0.9466,1.5744) (0.9735,1.5862)

The performance of the bootstrap percentile interval (5.3)

depends on how well the bootstrap distribution of Q*(p)

approximates the distribution of Qn(p). Asymptotic validity of

the bootstrapped estimator Qn(p) can be established.

First, note that

Qn(p) - 00 (p) I -< Qn(P) - Qn(P)I + Qn(P) - QO(p) I.
For the first term on the right-hand-side, write

Q•(p) -0(p) = f6[Qn(t)-Qn(t)]h (K((t-p)/h)dt

=- f1[qn(t)-qn(p)]h-IK((t-p)/h)dt

-+ nf[qn(p)-qn(t)]h-K((t-p)/h)dt
+ n On n~

+ I (p) h-1 K((t-p)/h)dt

n I +n- +I
1 I2+3Y

where qn(t) = n [Q (t)-Q°(t)] and qn(t) = n IQn(t)-Q°(t)] denote

the bootstrapped PL quantile process and the PL quantile process,

respectively. Now, by Lemma 2 of Padgett, Lio, and Yu (1986),

under the conditions on h and K stated in Section 2 and if F is
0

continuous with density fo, f ( Q(p))>O, if fo is continuous, and

H(TF )<1, where TF = sup{t:Fo(t)<l), 1121 4 0 in probability as
0 0

4.". 'L-.. '. -. , - ,- - '-,-.,.' i-.-. ,-,-,- '' ' .-.- ''-" " , '" " ,""""' "- . ", ,X ; -" " '
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n-*). Also, by a proof similar to that of Lemma 2 of Padgett, Lio,

and Yu (1986) using the results of Horvath and Yandell (1986), it

can be shown that I11-)0 in probability as n->-.

Now, under the conditions of Corollary 2.2 of Horvath and

Yandell (1986), -,
F n( (p))-p

IQn(P)-Qn(P)I [Q (p) (P)]
f o(Q(p))

Fn(Q(p))-p
n

00

F - O°cF(p)-Qn(p)]

+ nn
f ((p))
0

= O(n-(log n)1 ) + O(n-3 4 (log n)5/4 )a.s.

for each p such that F(Q (p))<l. Thus, for such p, lQ (p)-Q(p)-0O
n

in probability.

Finally, since Ion(p)-O(p)l--) in probability (see Padgett,

1986), for p so that F(Q (p))<l, in probability.

Thus, the bootstrapped percentiles converge to the value

Q0 (p), providing large sample justification of the percentile

interval. It should be noted that the bootstrap convergence

results presented here refer to the theoretical bootstrap

distribution of Q*(p) (when B=-), which in practice is estimated
n

by Monte Carlo methods (with B=1O00) as described earlier.
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